NUMERICAL CALCULATION OF THE PROPAGATION
OF A PLANE SUBSONIC RADIATION WAVE THROUGH
A GAS IN OPPOSITION TO A FLOW OF LIGHT RADIATION
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The propagation of a plane heating and ionization wave through a gas is considered; the wave
is sustained by a strong flow of monochromatic optical radiation (traveling in the opposite
direction) through energy transfer attributable to the emission of a continuous spectrum. In
the range of radiation flux densities under consideration, a situation arises in which the ex-
panding hot layer generates a shock wave transparent to the incident radiation. The radiation
wave is subsonic. The pressure within the hot layer is smoothly distributed, so that its
parameters may be determined by considering the equations of energy and transport of the
monochromatic source radiation and the radiative-transfer equations for various frequencies
and directions. The true spectral composition and distribution of the radiation are considered
in detail, using refined tables of the thermodynamic and optical properties. The results of
numerical calculations relating to air are presented; so are certain details of the methods
used in averaging the transfer equations, which prove very efficient for the radiation-gas-
dynamic problem under consideration and greatly reduce the volume of calculations.

1. Powerful sources of monochromatic optical radiation are widely employed for heating gases to
high temperatures. In addition to the question of achieving thermonuclear temperatures of the order of 1-
10 keV [1], which requires very high radiation flux densities there is also the problem of heating plasma
to lower temperatures such as 1-10 eV as required in various fields of technology. The production of
plasma with temperatures of this order under laboratory conditions facilitates a number of physical and
gasdynamic investigations, in particular those concerned with determining the optical and thermodynamic
properties of gases. It is especially interesting to determine such properties for dense plasma. In addition
to this the heated gas emits strong radiation, the long-wave part of this radiation being irrecoverably lost
from the plasma "cloud." This makes it possible to create strong sources of radiation with a continuous
spectrum.

The question arises as to the relationship between the temperature achieved and the density of the
radiation incident upon the plasma space, the temperature and density distribution within this volume, the
rates of flow, and the spectrum of the radiation generated in the plasma which passes outside the boundaries
of the heated volume, i.e., the question of the "optical plasmotron" characteristics.

The achievement of high densities in the plasma is eased when the plasma cloud is surrounded by a
fairly dense gas which restricts disintegration (“high-pressure plasmotron"), The simplest conditions for
carrying out physical investigations and also for theoretically predicting the parameters and subsequently
comparing them with experiment arise when the motion and transfer of the energy take place under plane
conditions. It is the plane case which we shall be considering in this paper.

Let us assume that a plane ionized layer capable of absorbing the optical radiation of the external
source very strongly is first created in the gas, Let us consider the evolution of the parameters in this
layer.
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One of the methods of creating such a layer lies in the action of radiation on the surface of a solid
target placed in the gas. After a certain holding period associated with the transfer of heat into the interior
of the surface, intensive evaporation begins, and if the radiation flux density exceeds a certain critical
value a "flash of absorption" arises in the layer of vapor [2-4]; evaporation ceases, since the radiation is
practically all absorbed in the ionized layer so formed.

Under . conditions in which the disintegration of the vapor is restricted by the gas medium, the absorb~-
ing layer heats rapidly; it starts radiating very strongly and heats the layers of gas at the interface with
the vapor. Subsequently the process develops in the gas surrounding the target, Calculations based on the
method of [2-4] for the range of flux densities here considered lead to comparatively short times of
development of the absorbing layer., Thus for a flux density of the order of 10 MW /cm’ and an aluminum
target this time is 15 isec. The flash time may be still further shortened by using a brief pulse of
initiating radiation. Since the screening time (according to [2-4]) diminishes rapidly with increasing flux
density, the energy of the "igniting pulse" may be extremely low. Bearing in mind this mode of initiation
we shall assume that the ionized layer of vapor lies above a stationary plane surface.

For a sufficiently high temperature the main part of the radiation emitted by the plasma lies in the
ultraviolet range, a considerable proportion of this radiation belonging to quanta with energies greater than
the first ionization potential. This radiation is trapped in the cold layers of gas adjacent to the plasma
cloud and heats them. The latter in turn start absorbing the optical radiation of the source very strongly;
they heat rapidly to a temperature close to the maximum, and themselves start emitting strong radiation,
heating the following layers, and so on. A wave of absorption and heating starts moving throughthe cold
gas in opposition to the flow of external radiation; behind the leading edge of this wave the gas is extremely
hot and radiates strongly. The radiation fluxes with the continuous spectrum are of the same order of
magnitude as the source flux of radiation, so that a wave of radiation develops.

The propagation of a wave of radiation was considered in [5, 6]. Estimates were given for the para-
meters of radiation waves 2propagating in opposition to a flux of external radiation of very great intensity
{(flux density ~ 10° MW /cm® or over), leading initially to the breakdown of the cold air. The temperature
in these waves is~ 50-100 eV, the velocity ~ 100 km/sec and over. Such radiation waves are supersonic
and constitute an alternative to detonation waves [5-7].

The opposite limiting case of the very slow supply of energy to a plasma cloud was considered in
{8-12]. For a small diameter of the beam the pressure is able to level itself out and become equal to the
surrounding atmospheric pressure. Under such conditions not only processes involving the lateral expan-
sion of the plasma column but also energy losses through the sides of the column play a significant part.
In estimating the rate of propagation of the spark allowance is made for the substantial role of molecular
and electron heat conduction. The propagation velocities equal several m/sec.

In the plane case here under consideration, the expansion of the heated layer in which the energy of
the radiation is released leads to the repulsion of the colder and more transparent gases lying above it
at velocities of ~ 1-5 km/sec for flux densities of 1-100 MW/cm?. A shock wave travels through the gas
in opposition to the light beam; the pressure behind it (including the zone of energy release may greatly
exceed atmospheric. The amplitude of the shock wave is not too great and the heating of the gas behind
the leading edge of the shock wave is not very substantial — the gas remains transparent. The source
radiation then penetrates almost without absorption to the edge of the plasma cloud (the front of the radia-
tion wave), which as we shall later show lags with respect to the leading edge of the shock wave for flux
densities of the external monochromatic radiation lower than a certain limit, remaining subsonic.

This paper is devoted to an analysis of the propagation of such a subsonic radiation wave, using
numerical methods, The solution of transient gasdynamic problems allowing for the transport of con-
tinuous-spectrum radiation, traveling in different directions with different quantum energies, involves
serious difficulties (mostly of a technical character), even under conditions of one-dimensional geometry.
Attempts at the direct numerical integration of the system of equations of radiative gasdynamics, while
keeping a fairly strict account of the spectral and angular characteristics of the radiation, are seriously
restricted by the limited capabilities of modern electronic computers.

In view of this we shall use the method of averaging the radiation<{ransport equations with respect to
both angles and frequencies. The effectiveness of angular averaging (which was employed earlier in [13-
15]) for the case of plane geometry is based on the fact that the average cosine can only vary over a fairly
narrow range. There are considerably greater difficulties in allowing for the true spectral composition
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of the radiation, owing to the complicated frequency dependence of the spectral absorption coefficients. The
use of the multigroup approximation [13-15}, taking a fairly precise account of the spectral composition,
may require too large a number of groups. Here we shall employ averaging over the true spectrum for a
small number of groups {16]. Similar ideas were recently expressed in [17]. Since the method of averaging
[16] proved to be very effective in relation to the present problem, we shall set out the results of experience
accumulated in the use of this method, providing useful guidance for the solution of other problems in
radiative gasdynamics.

The system of equations describing the motion of the gas (with both inflow and outflow of energy) in -
the one-dimensional plane case takes the form

ou op (1.1
5 T =0

d9r dz 1.
—6_t_ = U, 7 =P ( 2)
an ) dg

Vs =0 (1.3)
h=pw/(y—=1), vy=vtp), T=TI(kp (1.4)

Here t is the time, x the Euler constant, m the Lagrange mass coordinate, u the velocity, v the
specific volume (v = 1/p, where p is the density), p is the pressure, h the specific enthalpy,y the effective
adiabatic index, and T the temperature.

We shall consider that the energy is transferred solely by radiattion, including the radiation of the
external source and the "intrinsic" radiation (that generated in the hot gas), so that

I=q+q (1.5)
where q; is the radiation flux density from the source and gy, is the flux density of the intrinsic radiation,
The radiation transfer equation takes the form

ar,
P = ke (le — B, w=cosh {1.6)

Here I is the spectral intensity of the radiation, ¢ is the angle between the direction of propagation
of the radiation and the x axis,.%¢ is the spectral mass absorption coefficient of the radiatoin, € is the
energy of the quanta, Be is the Planck function, defined by the equation

15 ce?
Be=wr wem—t (1.7)

where o is the Stefan— Boltzmann constant, The relationships
e = K (8, hv P) (1.8)

characterizing the optical properties of the bases in the range of variation of the parameters under con-
sideration are usually specified in tabulated form.

We shall consider that the radiation of the source is directed along the x axis, for the sake of deter-
minacy in the negative sense
9q _
ERE {1.9)
Here %] is the mass-absorption coefficient of the source radiation *; =%g (€]), where €} is the
energy of the source quanta.

Subsequently we shall use the characteristics of the continuous~spectrum radiation integrated with
respect to both angles and spectral energies
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For the sake of convenience we shall in future omit the indices plus and minus attached to the limiting
cosines My + and g+ and the index i on the group limits €41 and €,1,
We have
qr = ;(‘Zf + 47 (1.12)
2. The continuous-spectrum radiation may be characterized at every point by a spectral-direction

diagram Yctand a spectral average cosine cgt,

\ Bpetdys (2.1

3

Yot = IUE, et =

iy~

and also by a radiation spectrum (%i)i in each group, a unilateral average group cosine c;t, and a uni-
lateral average group absorption coefficient <{x)*

((Ps)'ei- = Ue/Uii (2 .2)
et — S Cot (et de (2.3)
(it = S %e (@e)tde (2.4)

&1

When the radiation spectrum approaches the Planck form
(@e)i® = Be/B;, B, = S B.de (2.5)
the absorption coefficient (»);*, averaged over the true spectrum approaches the average Planck group ab-
sorption coefficient B;j(T) defined thus

£z
nP = 5 *e (@e)iP de 2.6)
Tables of the Planck group absorption coefficient % ;P and the function B;{(T) may be set up before
solving the problem.

Having integrated the transport equation (1.6) with respect to 4 and € we obtain {16]

aqzi— E’ii o
am o % () qiF + 2u®B; 2.7)
Bt = (diE/ %8 () = % (b, p) (2.8)

where £;+is the "distortion" coefficient and *;° the "reference" absorption coefficient, averaged, for
example, over the Planck or some other standard spectrum. For the sake of convenience, we omit the
plus and minus indices on % ;°, on the right-hand sides of (2.8) and subsequently. We note that the definition
of »;° may differ in different regions of the problem.

The direct solution of transient problems using the complete system of equations of radiative gas
dynamics, i.e., integrating the transport equation (1.6) at each time step, is practically impossible if a
sufficient number of € and ¥ points are to be taken,

However, in many cases there is no need to attempt this. Usually the average characteristics of the
field of radiation change more slowly than the directional diagram and the radiation spectrum at individual
t and € points. The gas-dynamic problem may therefore be solved by using averaged transport equations,
for example, in the form (2.7) and (2.8), the solution of (1.6) being carried out more rarely — at certain
specific instants of time (the instants of "averaging") — with the aim of determining the spectral and angular
characteristics of the radiation, if these are of independent interest, and finding the coefficients &+, cit
in the averaged equations (2.7).

The difficulties arising in a specific realization of the averaging method are due to the fact that the
average coefficients are functions of two variables {(m and t), while at the instant of averaging they are
functions of one variable. It was proposed to determine the time dependence by a recalculation process
in {16],
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The £+ relationship, for example, may be expressed in the form £i+(wit, t), where wit(m, t) is a
certain new variable chosen in such a way as to make the time dependence (dependence on t) as weak as
possible. If we make a successful choice of %,;°and the "principal variable" w;+, the time variation of £+
for w;* = const will be insignificant, and the averaging may be carried out quite infrequently. The choice
of %;°and wit is not unique. A final choice has to be made on the basis of a preliminary analysis of the

specific problem, and may be corrected during the actual calculations,

This is also true of the choice of the number of groups, Too great an increase in the number of
groups increases the amount of information to be stored and the volume of calculations based on the
averaged transport eguations, ultimately leading to the necessity of solving the spectral problem in every
time layer. The number of groups must nevertheless not be so low as to be incapable of allowing for the
specific characteristics of the problem and depicting its qualitative aspects correctly.

3. Let us consider the expansion of the gas in which the energy of the source radiation is released,
and also its redistribution by virtue of the transfer of radiation from the continuous spectrum. Let the
velocity of sound in the hot gas be high and let the expansion of the boundary of the plasma cloud take place
fairly slowly. During the period of energy inflow the sound perturbations will therefore be able to travel
repeatedly through the hot volume, equalizing the pressure in the latter, i.e., in the hot region we may put

FE =0, p=p"( (3.1)

This enables us to avoid accounting for the high-frequency pressure perturbations (acoustic vibrations),
which, as direct numerical calculations show, travel rapidly through the heated layer, without changing the
average pressure and other characteristics of the radiation wave. The amplitude and position of these
perturbations are to some extent random and there is no need to take an exact account of them.

Subsequently we shall solve the problem subject to the assumption (3.1). ILet us now set out the
method of solving the problem,

Let the pressure p°(t) be given, Then the system in which Egs. (1.1) and (1.2) are discarded enables
us to solve the problem of radiative energy transfer and find h{m, t) and v(m, t). From Egs. (1.2) we find
the Euler coordinate x(m, t) and the velocity u(m, t) of all the particles, including the boundaries of the hot
volume, i.e., the velocity of the "piston" u°(t), By solving the comparatively simple problem of the motion
of the cold layers under the action of such a piston, allowing for a possible fall in pressure and the motion
of the shock wave, i.e., by using (1.1) but not taking account of the energy evolution in these transparent
layers, we may find the values of the pressure everywhere, even in the piston, and hence in the hot region.
The solutions of the external and internal problems have be be matched ot one another,

When the external flux of radiation and the pressure are constant in time, the gas velocity u; at the
boundary of the absorbing layer (the leading edge of the radiation wave) also remains constant. Then the
velocity of that part of the gas which is cold and transparent to the source radiation remains constant up
to the leading edge of the shock wave, which moves at a constant velocity a and frontal pressure pg {u° = ug
and p°® = pg). If the shock wave is strong, we obtain

P° = A (¥, v:) ¢* 81, u® = B (y, y,) g3 5 (3.2)

where 7 is the adiabatic index in the hot layer, ¥4 is that in the cold layer behind the leading edge of the
shock wave, 6 is the density of the gas in front of the leading edge, referred to the normal density pg of
air, qq is determined by the equation

9 = ¢’ + ¢ (3.3)
Here q; ° is the flux density of the external radiation incident upon the leading edge of the radiation

wave, qp° is the flux density of the intrinsic radiation (continuous spectrum) moving away from the leading
edge,

If p is in bar, u in km/sec, ¢ in MW/cm?, ¥ = 1,18 and ¥s = 1.4, then A ~ 13 and B ~1,

Thus to an accuracy disregarding the radiation losses q,° (which are not known in advance) we may
use Eq, (3.2) to estimate the pressure in the layer without solving the transport problem., As we shall
later show, q,.° is small compared with qz°.

The temperature and radiation fluxes in the radiation wave and the mass velocity of the propagation
of its leading edge depend only slightly on the pressure. Hence subsequent corrections make little differ-
ence to the initial estimte of p°.
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d 2, cm?/g ‘ In accordance with the general presentation of the problem,

the propagation of the radiation wave is calculated on the assumption
that a plasma layer opaque to incident radiation has already formed
/a,_‘____j att =0, The time required for the formation of this layer, measured
from the initial action of the source, is determined by the theory of
[2-4]. In solving (1.6) and (2.7) we assume that no continuous-spec-
A trum radiation falls on the boundaries of the volume under consider-
z ation from outside.
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/ " 4. By way of example let us give the results of some numerical
2 / calculations relaing to a subsonic radiation wave traveling under the
/f/ influence of monochromatic radiation with a quantum energy of €] =

N

1.16 eV in air of normal density, For this case (p;=1.29. 1073 g/cms)

! | with q;° =35, 10 and 20 MW/em® respectively, according to Eq. (3.2)
J we obtain p°® = 30, 50, and 80 bar (allowing for the radiative energy
7,ev losses determined in the calculation).

LY
[
(e,

7 -
. The thermodynamic properties of the air were determined
from tables {18].

Fig. 1 .
g In calculating the transfer of radiation in hot air we used the

tables of [19], For temperatures of over 20 +10% °K and quantum
energies € > 18,5 eV (at all temperatures) these tables were supplemented by the results of calculations
based on the method of [19], but without allowing for the lines, In order to reduce the amount of calculations
these tables were transformed by uniting mutually adjacent spectral intervals. The number of spectral
intervals was thus reduced to 175.

The intensity of the radiation was determined for 24 rays.

Averaging was carried out in three groups. The first group incorporated quanta with energies of
€ <6.51 eV (long-wave radiation). The third group contained radiation with £ > 7,75 eV, The second group
was intermediate.

Figure 1 illustrates the temperature dependence of the average Planck absorption coefficients and
also the monochromatic-radiation absorption coefficient for a pressure of p°® = 50 bar. The figures 1-4
denote the curves of %4P, %3P, ¥3P, and %*; remain large; the quanta of these groups cannot travel to very
great distancse from the hot zone. These provide for the heating of the cold layers and the forward motion
of the radiation wave in the opposite direction to the radiation flux of the source. The qualitatively differ-
ent type of behavior of * ¢(T) for soft and hard quanta as T = 0 necessitates the introduction of at least
two groups.,

Actually the boundary separating those parts of the spectrum with relatively long and relatively short
ranges changes with temperature [19]. This may best be allowed for by introducing an intermediate group.
By comparing *3P dnd % 3P with *; we may convice ourselves of the fact that the region with low tempera-
tures is transparent to the external radiation, but starting from a temperature of 1-2 eV this radiation is
intensively absorbed in the radiation wave.

For all temperatures *yP < %P, The quanta of the intermediate group thus form heating "temperature
tongues" in front of the leading edge of the radiation wave. Such tongues may clearly be seen in Fig, 2,
which gives the temperature distributions at various instants of time (up to 7 Hsec) for the case in which
the flux density q;° =10 MW /cm? (the following figures also relate to this case). The numbers 0-4 corre-
spond to the instants of time 0, 2.8, 4.3, 5.8, 7.3 Hsec. We see from Fig. 2 that the leading edge of the
radiation wave travels toward the flow of radiation from the source at an almost constant velocity (the
mass flow through the leading edge is my = 25 g/cmz/sec). In addition to this, a trailing edge develops,
moving in the opposite direction at a lower velocity and gradually becoming slower. The maximum tem-
perature ~ 3,5 eV varies slowly with time.

Figure 3 shows the distribution of the unilateral group flux densities of the radiation qj+(i =1, 2, 3)
with respect to the same coordinate at the instant of time t = 2.8 Usec. The numbers 1-3 denote the
relationships for as™, q2+, qs™, I-III those for 1™, 4~, g3~ We see that the quanta of the first ("soft™)
group pass out of the hot zone and cease being absorbed. The quanta of the third ("hard™) group generated
in the hot air are almost completely absorbed in the narrow layers constituting the "fronts" (leading and
trailing edges) of the radiation wave.
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The flux density of the intrinsic radiation emerging
from the hot zone through the leading and trailing edges
of the radiation wave is relatively low, 1 MV/cm?, or
only 10% of q;°.

Figure 4 presents a detailed distribution of the
parameters h (curve 1) and -q (curve 2) with respect to
mass close to the leading edge of the radiation wave at
the instant t = 2.8 K sec, The nominal position of the
leading edge, defined as the point at which the absolute
value of oh/0m reaches a maximum, is indicated by the
broken line, The distribution of the computed points
with respect to mass was nonuniform; for a total number
of such points equal to 240 (in the present version) some
40 points with a mass interval five times smaller than in
the hot region wereplacedatthe leading and trailing edges,

The total number of computed layers in the problem was quite large {up to the instant of time 7 tsec)—

about 700,

Over this time four averaging were carried out (at the instants 1.8, 2.8, 4.8, and 7.3 Usec), In order
to illustrate the influence of the recalculations procedure the results obtained in the preliminary stage of
calculation are shown as a broken line in Fig. 2 for the latter instant of time, Satisfactory agreement with
the results obtained after recalculation (continuous curves) was also obtained for the other instants of time,
convincing us that the averaging frequency adopted in the present analysis was sufficient. The long inter-
vals between averagings demonstrate the effectiveness of our use of the averaging method in connection
with the present problem.
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Let us give some more detailed attention to the choice
of reference coefficients, In the present problem there are

I T.ev // three regions with different properties: a hot zone behind
/ the leading edge of the radiation wave with a temperature
/ ) close to maximum, and two regions of cold air in front of
In the first region the reference coefficient adopted was the
1/

the corresponding edges of the radiation wave ("tongues").
/ z g 4 average Planck absorption coefficient., In front of the lead-
ing and trailing edges of the radiation wave the spectral
\ \ \ composition of the radiation varies little by comparison
N

with the spectrum at a "frontal point" but differs consid-

L erably from the Planck spectrum for the temperature
g 144 L5 20 zem 25

existing in front of the edge. Hence the value of %;P in the
cold region is considerably smaller than the true value of
(%> (for the first group by several orders of magnitude).
(Correspondingly &;wouldbe of the order of 10°-10%.)

Fig. 7

The sharp change in £ which occurs on passing through the leading edge of the radiation wave makes
interpolation difficult and reduces the accuracy of numerical calculations. In the problem under considera-
tion we may relate the reference absorption coefficient in the tongues to the spectrum at a certain depth i
inside the leading edge of the radiation wave. On passing through the leading edge there is a change in the
reference absorption coefficient, and the value of §; varies less rapidly. This may be seen from Fig. 5
which gives the mass dependence of £;tat the instant t = 2.8 #isec. Figure 6 shows the ¢;+(m) relationship
for the same instant of time. In the last two figures the serial number of i of the corresponding group is
denoted by an arabic figure for the relationships with index plus and a Roman figure for those with index
minus, We see that the range of variation of ¢j is small.

By way of "principal™ variable w;+ we chose the group optical thickness, determined by the equations
dvE = +x°dm
and reckoned from the leading and trailing edges of the radiation wave.

Figure 7 shows the temperature distribution T and Fig. 8 shows the flux density distribution of the
incident radiation q; at different instants of time t in Euler coordinates x. Curves 1-4 correspond to the
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n . instants of time 2.8, 4.3, 5.8, 7.3 Usec. In these coordinates
¢, MW/cm? /' /' the edges are sharper than in Lagrange coordinates (Fig. 2),

since as the temperature falls the density increases. The rate
/ / / of propagation of the leading edges D ~2.5 km/sec, At the

same time the hot zone, in which the density is low, is drawn
] z/ % /// outto relativelylong distances. The characteristic depth of
4

penetration of the radiation (the distance in which the quantity

q; falls by a factor of e as compared with q;°% is 0.3 cm.
/ / / The flux of radiation q; with an amplitude 10-20% of the value

of q7° also exerts an influence to a considerable depth — layers
of the order of 1.0-1.5 cm thick., The point of maximum tem-
z,cm perature lies at about 0.3 cm from the leading edge; the tem-
25 2/ L5 20 25  perature behind this varies very little throughout almost the
while thickness of the radiation wave ("plateau).

Fig. 8
Figure 9 shows the spectrum of the radiation emitted
from the leading edge of the radiation wave in air at various
23 A instants of time t = 2.8, 4.8, and 7.3 Msec (curves 1-3 respec-
9ev / 3 tively); it is quite smooth and approximately corresponds to
the Planck distribution for a temperature of ~1.5 eV, Inside
the radiation wave the spectra are more complicated, especially
in the second group and close to the lower limit of the third
group.

N
g
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‘4

4.z

/
74
ar

The picture of radiation-wave propagation for slightly
greater and smaller flows is similar to the foregoing for the
case q;° =10 MW/cm?. The maximum temperature depends
only slightly on the flux density; for q;° =5 and 20 MW/cm? it
is respectively 3 and 4 eV, After the period of establishment
the leading edge of the radiation wave moves at an almost
constant velocity. This velocity varies approximately as in-
dicated by Eg. (3.2).

The mass flow m, through the leading edge of the radiation wave is much smaller in the range of flux
densities considered than that through the edge of the shock wave propagation in front of the radiation wave.
Thus for q;° =20 MW/cm® we have my = 60 g/cm?/sec, whereas mg = 340 g/cm®/sec, Thus the radiation
wave lags on the shock wave.

The temperature at the leading edge of the shock wave is 3000° K; according to {197 such a shock
wave is transparent for very great thicknesses of the shock-compressed layer.

For a temperature of ~35-45 - 10° °K (inside the radiation wave) the velocity of sound is ~10 km/sec,
which considerably exceeds the linear rate of propagation of the leading edge of the radiation wave and
justifies the foregoing (8 3) assumption as to the uniformity of the pressure in the hot zone.

For flux densities greater than those considered, the process here described is replaced by one of
ligh detonation [5-7] when the absorption zone moves at the same rate as the shock-wave front. For very
high densities the flux of the radiation wave over takes the shock wave, becoming supersonic {5, 61.

The latter case is qualitatively reminiscent of the replacement of a temperature wave of the second
kind (TW-II) by a temperature wave of the first kind (TW-I) {20].

The foregoing results were communicated to the Second All-Union Congress Regarding the Physical
Effects of Optical Radiation on Condensed Media in Leningrad (1972).

The authors wish to thank Yu. P. Vysotskii and V. A, Nuzhnyi for presenting additional results of
absorption-coefficient calculations.
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